Abstract: Field measurements indicate a correlation between increased impervious cover and decreased stream base flow in and near the White Clay Creek Wild and Scenic River watershed near Newark, Delaware. A stream base flow monitoring network was established in 19 watersheds near the University of Delaware campus. The watersheds have land uses varying from heavily forested to highly urbanized with impervious cover ranging from 3% to 44%. Using GIS land use mapping, watershed impervious cover was estimated using the "Delaware Method" based on the ratio of pavement and roof area for each land cover condition. Stream base flows were calculated using the continuity equation \(Q = vA \) from velocity and channel cross section area measurements recorded on five days during 2006 and 2007. Results from all five events indicate increased watershed impervious cover correlates with decreased stream base flows. For the five events, the coefficients of determination \((R^2) \) based on linear regression of impervious cover and base flow data are 0.33, 0.35, 0.32, 0.46, and 0.58; evidence of fair to reasonably good correlation.
Increased watershed imperviousness can result in dwindling drinking water and aquatic resource flows especially during drought periods. Water resource protection area ordinances, recharge augmentation, and pavement reduction techniques are available to reduce the impacts of impervious cover on watershed hydrology.

Suggested Reviewers:

Opposed Reviewers:
COPYRIGHT TRANSFER AGREEMENT

Manuscript Number:

Type:

Publication Title:

Manuscript Authors:

Corresponding Author Name and Address:

This form must be returned with your final manuscript to: American Society of Civil Engineers, Journals Production Services Dept., 1801 Alexander Bell Drive, Reston, VA 20191-4400.

This form must be returned with your final manuscript to: American Society of Civil Engineers, Journals Production Services Dept., 1801 Alexander Bell Drive, Reston, VA 20191-4400.

The author(s) warrant(s) that the above cited manuscript is the original work of the author(s) and has never been published in its present form.

The undersigned, with the consent of all authors, hereby transfers, to the extent that there is copyright to be transferred, the exclusive copyright interest in the above-cited manuscript (subsequently called the "work"), in this and all subsequent editions of this work, and in derivatives, translations, or ancillaries, in English and in foreign translations, in all formats and media of expression now known or later developed, including electronic, to the American Society of Civil Engineers subject to the following.

- The undersigned author and coauthors retain the right to revise, adapt, prepare derivative works, present orally, or distribute the work provided that all such use is for the personal noncommercial benefit of the author(s) and is consistent with any prior contractual agreement between the undersigned and/or coauthors and their employer(s).

- In all instances where the work is prepared as a "work made for hire" for an employer, the employer(s) of the author(s) retain(s) the right to revise, adapt, prepare derivative works, publish, reprint, reproduce, and distribute the work provided that such use is for the promotion of its business enterprise and does not imply the endorsement of ASCE.

- No proprietary right other than copyright is claimed by ASCE.

- An author who is a U.S. Government employee and prepared the above-cited work does not own copyright in it. If at least one of the authors is not in this category, that author should sign below. If all the authors are in this category, check here ☑ and sign here: _____________________________. Please return this form by mail.

SIGN HERE FOR COPYRIGHT TRANSFER [Individual Author or Employer’s Authorized Agent (work made for hire)]

Print Author’s Name: ____________________________ Signature of Author (in ink): ____________________________

Print Agent’s Name and Title: ____________________________ Signature of Agency Rep (in ink): ____________________________

Date: ____________________________

Note: If the manuscript is not accepted by ASCE or is withdrawn prior to acceptance by ASCE, this transfer will be null and void and the form will be returned to the author.

* Failure to return this form will result in the manuscript’s not being published.
July 17, 2008

Jennifer Parresol, Editorial Coordinator
ASCE Journal Services
1801 Alexander Bell Drive
Reston, VA 20191-4400

RE: Resubmittal of Ms. No. HEENG-261
Link between Impervious Cover and Baseflow in the White Clay Creek Wild and Scenic Watershed in Delaware

Dear Editor Parresol:

Enclosed is the resubmittal of our manuscript to reduce the contents below the 10,000 word criteria. We have reduced the size of the manuscript by condensing narrative and deleting several tables and figures. Also enclosed is the word sizing chart. This article is submitted as invited by Glenn Moglen for the special issue on "Impervious Surfaces in Hydrologic Modeling and Monitoring" that the committee is organizing for the ASCE Journal of Hydrologic Engineering (JHE).

Warmly;

Gerald. J. Kauffman, P.E., Director
University of Delaware, Water Resources Agency
DGS Annex Academy Street
Newark, DE 19716
302-831-4929 jerryk@udel.edu
Link Between Impervious Cover and Base Flow in the White Clay Creek Wild and Scenic Watershed in Delaware

Gerald J. Kauffman¹ P. E., Andrew C. Belden², Kevin J. Vonck³, and Andrew R. Homsey⁴

Abstract: Field measurements indicate a correlation between increased impervious cover and decreased stream base flow in and near the White Clay Creek Wild and Scenic River watershed near Newark, Delaware. A stream base flow monitoring network was established in 19 watersheds near the University of Delaware campus. The watersheds have land uses varying from heavily forested to highly urbanized with impervious cover ranging from 3% to 44%. Using GIS land use mapping, watershed impervious cover was estimated based on the ratio of pavement and roof area for each land cover condition. Stream base flows were calculated using the continuity equation \(Q = vA \) from velocity and channel cross section area measurements recorded on five days during 2006 and 2007. Results from all five events indicate increased watershed impervious cover correlates with decreased stream base flows. For the five events, the coefficients of determination \((R^2) \) based on linear regression of impervious cover and base flow data are 0.33, 0.35, 0.32, 0.46, and 0.58; evidence of fair to reasonably good correlation. Increased watershed imperviousness can result in dwindling drinking water and aquatic resource flows especially during drought periods. Water resource protection area ordinances, recharge augmentation, and pavement reduction techniques are available to reduce the impacts of impervious cover on watershed hydrology.

CE Database subject headings: Impervious cover; Base flow; Infiltration; Watershed; Hydrology; Drought

¹ Director and Water Resources Engineering Professor, University of Delaware, Institute for Public Administration, Water Resources Agency. DGS Annex, Academy Street. Newark, Delaware 19716. (302) 831-4929. e-mail: jerryk@udel.edu.

³ Ph. D. Candidate, University of Delaware, School of Urban Affairs and Public Policy. DGS Annex, Academy Street. Newark, Delaware 19716.

⁴ GIS Coordinator, University of Delaware, Institute for Public Administration, Water Resources Agency. DGS Annex, Academy Street. Newark, Delaware 19716.
Introduction

Hydrology is the study of water quantity and quality circulated between the earth and the atmosphere. Thornthwaite and Mather (1957) defined the hydrologic cycle by the water budget equation as:

\[P = R + I + ET - \Delta S \]

Where:

- \(P \) = precipitation;
- \(R \) = runoff that flows overland to a waterway;
- \(I \) = infiltration to the groundwater table as the source of dry-weather base flow in streams and deeper aquifers;
- \(ET \) = evaporation directly to the atmosphere plus transpiration by plants;
- \(\Delta S \) = change in moisture storage in surface water, groundwater, and/or soil.

Water resources engineers and planners are interested in the runoff and infiltration components of the hydrologic cycle. Runoff estimates are required to design hydraulic structures such as storm sewers, culverts, and stormwater basins. Infiltration data is necessary to design groundwater facilities like septic systems and recharge basins.

In addition to precipitation patterns, soil type, and land cover; the amount of impervious cover in a watershed is a primary predictor of runoff and infiltration. Impervious cover is the area of pavement and roof area that accompanies urban and suburban development.

Water budget theory holds that as impervious cover increases in a watershed, runoff increases and infiltration declines. As watersheds become more urbanized, added impervious cover can lead to more frequent and intense flood flows. Decreased infiltration caused by impervious cover lowers the groundwater table, the source of dry-weather stream base flows, and can lead to dwindling water supplies during drought.

Water budget formulas indicate that increased impervious cover from urban development in watersheds leads to reduced groundwater recharge or infiltration. A U.S. Environmental Protection Agency (1993) water budget model indicates that natural ground cover with no impervious cover can infiltrate up to 50% of total precipitation while infiltration declines to 35% of precipitation for developed areas with 35% to 50% impervious cover. The curve number method (Table 1) indicates that runoff increases and infiltration and other interception losses decrease with increasing impervious cover (USDA 1997). For 5.1 cm (2.0 in) of precipitation, assuming
hydrologic group B soils, Infiltration and other interception losses decline from 4.9 cm (1.9 in) for open space (0% impervious) to 0.5 cm (0.2 in) for parking lots (98% impervious).

Many jurisdictions strive to protect the quality and quantity of ground and surface water supplies by setting maximum impervious cover criteria for new development. The New Castle County, Delaware (1997) water resource protection area ordinance sets an impervious cover threshold of 20% on new development in recharge, wellhead, limestone aquifer, and reservoir watershed areas. For instance, a new 10 - hectare (25 - acre) subdivision is limited to 2 hectares of new pavement and roof area on the parcel. Further research on the link between impervious cover, infiltration, and base flow is sought to understand the hydrologic basis for water resource protection ordinances.

Objectives and Approach

The objective of this research is to examine the relationship between impervious cover and stream base flow in 19 watersheds in and near the White Clay Creek Wild and Scenic River watershed near Newark, Delaware. A stream base flow monitoring network was established at 14 watersheds near the University of Delaware campus. USGS stream gage data provided supplemental base flow measurements along 5 streams in the Christina River Basin; the Brandywine, Red Clay, White Clay, Christina, and Shellpot Creeks. GIS mapping derived impervious cover estimates for watersheds ranging from highly forested (0% to 10% impervious) to highly urbanized (over 40% impervious). University of Delaware field crews estimated dry-weather base flows using stream velocity and cross section area measurements recorded on five days during 2006 and 2007. Stream base flow data were plotted against watershed impervious cover for each sampling event to examine for correlation using linear regression line of best fit techniques.

Study Area

The study area is the White Clay Creek watershed, part of the Christina River Basin in northern Delaware, situated midway between Philadelphia and Baltimore along the mid-Atlantic coast in the USA. The White Clay Creek drains 265 km2 (102 mi2) and flows from headwaters in Chester County, Pennsylvania and downstream through Newark, Delaware before joining the Christina River (Fig. 1). The watershed is divided by the fall line, the head of navigation which splits the hilly, rocky Piedmont physiographic province to the north from the flat, sandy
Coastal Plain to the south. The stream monitoring stations are situated at or above the fall line in the Piedmont province. The White Clay Creek and tributaries flow through or near the University of Delaware campus which provides convenient access by student field crews to the stream monitoring sites. In 2000, the President and Congress declared 306 km (190 mi) of the White Clay Creek and tributaries as a national wild and scenic river, now one of only two rivers in the United States designated on a watershed basis instead of a river segment basis.

Literature Review

Many studies dating to the late 1960’s suggest that increased impervious cover in watersheds leads to altered runoff patterns and reduced groundwater recharge available for dry-weather stream base flow. Several recent studies suggest base flows may remain unchanged or even increase as watersheds become more urbanized due to factors such as leakage from water supply piping or imports of water into the basin. Table 2 summarizes a literature review of impervious cover and base flow studies.

1960s: A guide book using data from the Brandywine Creek in Pennsylvania (just upstream from Delaware) asserted that urbanization is the most forceful of land use changes that affect the hydrology of a watershed (Leopold 1968). Leopold wrote that: *“increased imperviousness has the effect of increasing flood peaks during storm periods and decreased low flows between storms.”*

1970s: In Philadelphia watersheds, stream base flow declined steadily until watershed imperviousness reached 40% to 50% (Hammer 1973). A U.S. Fish and Wildlife Service study concluded that stream habitat for fish reach a degraded condition when base flow drops to 30% of average when imperviousness exceeds 45% of the watershed (Tennant 1976). A synthesis of research in the Canon’s Brook watershed in England found that decreased base flow is likely to occur as a result of urbanization (Hollis 1976). Klein (1979) conducted a linear regression study of 27 watersheds in the Piedmont province of Maryland and found that stream base flow diminishes with increased watershed imperviousness as follows.

<table>
<thead>
<tr>
<th>Impervious Cover</th>
<th>Stream Base Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m³/s/km²</td>
</tr>
<tr>
<td>10%</td>
<td>0.0066</td>
</tr>
<tr>
<td>30%</td>
<td>0.0045</td>
</tr>
<tr>
<td>50%</td>
<td>0.0025</td>
</tr>
</tbody>
</table>
1980s: Stream base flows along six urbanized streams in Long Island, New York were reduced to 20% to 85% of total stream flow due to construction of sewers and impermeable cover (Simmons and Reynolds 1982). Base flow along streams with undeveloped watersheds usually account for 90% to 95% of total stream flow.

1990s: Along the Peachtree Creek near Atlanta, Georgia, flows declined as the watershed evolved from less urbanized to more urbanized. Ferguson and Suckling (1990) wrote: “…declining low flows can be adequately explained by urban hydrologic theory, which focuses on the effects of urban impervious surfaces upon direct runoff and infiltration.” Low flows in dry years declined with increased urbanization because of reduction of water stored in the subsurface due to deflection of precipitation from recharge and removal of water from the watershed by evapotranspiration. To restore base flows, they recommended that stormwater management should include infiltration approaches to force runoff into the soil.

Hydrograph separation techniques for 10 gaged streams on the South Shore of Long Island, New York indicated base flow averaged between 14% to 88% of annual stream discharge from 1976-1985 in urbanized watersheds, down from 95% of annual discharge during 1948-1952, a period when watershed development was minimal (Spinello and Simmons 1992). Base flow decreases were due to lowering of the water table as a result of urbanization including more impermeable area and routing of storm and sanitary sewers. A study from Olympia, Washington (1996) indicated increases in impervious cover resulted in decreased infiltration (recharge) and increased runoff. By the late 1970s, base flows in the developed East Meadow Brook along the South Shore of Long Island, New York decreased by 65% to 70% compared to the predevelopment period before 1953 (Scorca 1997). Prior to 1953, base flow in the undeveloped watershed was about 95% of total stream flow. By the 1970s, after development during the post-World War II building boom, base flow declined to 65% of total stream flow.

2000s: A hydrologic study in the Gwynns Falls watershed near Baltimore affirmed the existence of a threshold by concluding that the runoff ratio changes dramatically when watershed impervious cover exceeds 20% (Brun and Band 2000). A study of 11 Vancouver watersheds indicated summer base flow was extremely low in streams where impervious cover exceeded 20% (Finkenbine, Atwater, and Mavinic 2000). Increased impervious cover in the watersheds caused declines in summer base flow due to decreased groundwater recharge. Research along 47 southeastern Wisconsin streams found that base flow declined significantly when watershed
imperviousness exceeded a threshold range of 8 to 12% (Wang, Lyons, and Kanehl 2001). In the Accotink Creek watershed in Virginia, Jennings, and Jarnagin (2002) concluded that “a statistically significant change in stream flow response occurred between the 13 percent (1963) and 21 percent (1971) impervious surface coverage.”

An article by the Center for Watershed Protection (2003) concluded that urbanization causes increased impervious cover in a watershed whereby "...dry weather flow in streams may actually decrease because less groundwater recharge is available...".

An Illinois State Water Survey conceptual model of urban watersheds in Illinois indicated base flows actually increased with more urbanization due to leakage from water supply systems or sanitary sewers, lawn watering, and car washing (Meyer 2002).

Konrad and Booth (2002) studied hydrologic trends in 10 urban, suburban, and rural watersheds in the Puget Sound basin of western Washington and concluded that “trends in the 7 day low flow were mixed, increasing in one urban stream and one suburban stream, and decreasing in one suburban and two rural streams.” The authors concluded that changes in infiltration and recharge due to urban development are not influenced by low wet season base flow, instead, base flow may actually increase in urbanizing watersheds due to water line and sanitary sewer leaks, interbasin water withdrawals, and groundwater pumping to outside the watershed.

Brandes, Cavallo, and Nilson (2005) examined 10 watersheds in New Jersey and Pennsylvania in the Delaware River Basin where impervious coverage ranged from 7% to 21% and concluded that “… increases in impervious area may not result in measurable reductions in base flow at the watershed scale.” Only one of the 10 watersheds detected decreased base flow trends and a few of the watersheds recorded increased base flow over time. The loss of recharge due to increased impervious cover may have been offset by water imports into the basins such as wastewater discharges and leaking sanitary sewers which artificially replenish the groundwater table and base flows. Two of the 10 watersheds exceeded 15% impervious cover and only one watershed exceeded 20% impervious, thresholds where one is more likely to observe base flow reductions due to urbanization.

Walsh et. al. (2005) concluded that “urbanization does not affect instream base flow among urban areas in the world”. Reduced base flow from increased catchment impervious may occur but may be counteracted by water supply and wastewater pipe leaks and water imports from outside the watershed.

In the White Oak Bayou watershed near Houston, Texas, the number of days below expected flow declined from 1948 to 2000, a trend associated with human activity (Rogers and DeFee 2005). As impervious cover
increased from 10% in 1972 to 30% by 2000, the potential for flooding and drought doubled three times. The study suggested when urban development reaches 25% of the watershed, the potential for floods and droughts increases exponentially.

Methods

We selected 14 watersheds draining to the White Clay Creek near the University of Delaware campus in Newark, Delaware to measure dry-weather base flow (Fig. 2). Since the streams were near the University of Delaware, crews were able to visit all of the sites in one day to measure base flow and minimize variances due to weather and precipitation changes from one day to the next. We supplemented the network and included five USGS stream gages in the Christina River Basin making a total of 19 base flow monitoring stations available for analysis. The watersheds were selected to have a wide variance in impervious cover ranging from 3% to 44% with land uses ranging from heavily forested to highly urbanized.

Using Arc Map GIS, we calculated land use area in the watersheds of the 14 stream monitoring sites and 5 USGS stream gage stations in the Christina River Basin (Table 3). The State of Delaware Planning Office provided 2002 land use data interpreted from aerial photography which was updated to 2006 by the University of Delaware, Water Resources Agency.

We estimated the composite impervious cover in each watershed using the “Delaware Method” formula as:

$$IC_{TOT} = \frac{[IC_1(LU_1) + IC_2(LU_2) + \ldots + IC_i(LU_i)]}{DA_{TOT}}$$

Where:

- IC_{TOT} = total impervious cover of the watershed (%).
- IC_1, IC_2, IC_i = representative impervious cover of each land use (%).
- LU_1, LU_2, LU_i = area of each land use in the watershed.
- DA_{TOT} = total drainage area of the watershed.

We calculated dry-weather base flow by measuring stream velocity (v) and cross section area (A) at each monitoring site and then plugging into the continuity equation of hydraulics where: $Q = vA$. Student field crews performed base flow measurements on May 2, May 26 and August 9 in 2006; and September 6 and October 8 in 2007. We avoided day to day weather and precipitation variances by measuring base flows at all 19 sites on the same day. We attempted to minimize groundwater recharge differences due to geology and soils as all of the
watersheds are situated in the Piedmont physiographic province. Dry-weather base flow patterns were confirmed by conducting monitoring at least 7 days after the last rain event and examining for near-horizontal, recession limbs of hydrographs at the White Clay Creek at Newark USGS stream gage No. 01478650 on each monitoring date.

We estimated stream velocity using a propeller-type current meter manufactured by Geopacks of London, England. We calculated the mean number of propeller revolutions per unit time from 3 trials and calculated velocity by the following formula as provided by the manufacturer:

\[v = (0.000854)(N)(60)/(T) + (0.05)(3.28) \]

Where:

- \(v \) = velocity
- \(N \) = number of revolutions of the meter
- \(T \) = time for the meter to spin the counted number of revolutions

Along several small streams, base flow became too low to measure with the current meter as the propeller blades were not fully submerged and got caught on the channel bottom. When flow depth was too shallow to use the current meter, we calculated velocity using the floating object method where:

\[v = t/L \]

\(t \) = time for a floating object such as a cork to flow distance, \(L \)

We field surveyed stream cross-section area by measuring the depth of flow from the water surface to the channel bottom at even intervals measured horizontally across the stream.

We calculated base flow using the continuity equation of hydraulics where \(Q = vA \). For instance, we estimated the base flow in Middle Run on May 26, 2006 as \(Q_{W7} = (0.44 \text{ m/s})(0.27 \text{ m}^2) = 0.12 \text{ m}^3/\text{s} \). To account for differences in watershed area, we calculated unit base flow by dividing base flow by the drainage area. For Middle Run, the unit base flow recorded on May 26, 2006 was \(Q/DA = (0.12 \text{ m}^3/\text{s})/(10.1 \text{ km}^2) = 0.012 \text{ m}^3/\text{s/km}^2 \).

Results

Table 4 summarizes typical base flow measurements for May 2, 2006. For statistical analysis, we prepared scatter plots by graphing stream base flow (BF) on the vertical axis and watershed impervious cover (IC) on the horizontal axis. Correlations between base flow and watershed impervious are described by the coefficient of determination \((R^2) \) and linear regression straight line of best fit \((BF = m(IC) + b) \) where \(m \) is the slope \((\text{m}^3/\text{s/km}^2/\% \text{ IC}) \).
impervious) and b is a constant. The closer R^2 is to 1.0, the better the line of fit. An R^2 value above 0.3 would indicate fair correlation between variables and R^2 values above 0.5 would indicate reasonably good correlation.

Table 5 provides summary statistics of the base flow monitoring results such as R^2, slope of the line of best fit; and mean, minimum and maximum base flow

May 2, 2006: We conducted the first round of base flow monitoring on May 2, 2006, 8 days after the previous rainfall event of April 25 which deposited 0.30 cm (0.12 in) at the University of Delaware rain gage in Newark. The maximum temperature on May 2 was 24.7°C (76.4°F). Linear regression ($BF = -0.0588(IC) + 0.0298$) and $R^2 = 0.33$ indicates a negative correlation between increased watershed impervious cover and decreased stream base flow (Fig. 3). Base flows ranged from 0.003 m3/s/ km2 for a watershed with 41% impervious cover to 0.049 m3/s/ km2 with 4.6% impervious cover.

May 26, 2006: We conducted the second round of base flow monitoring on May 26, 2006, 7 days after the previous rainfall event of May 19 which deposited 0.23 cm (0.09 in) at the University of Delaware rain gage in Newark. The maximum temperature on May 26 was 26.4°C (79.6°F). Fig. 4 indicates base flow ranged from 0.003 to 0.034 m3/s/ km2 for impervious area ranging from 41% to 4.6%. Linear regression ($BF = -0.035(IC) + 0.0186$) and $R^2 = 0.35$ indicates stream base flow declined with increased watershed imperviousness and the correlation was about the same as observed on May 2, 2006.

August 9, 2006: After waiting over the summer for the streams to recede back to base flow conditions, we conducted the third round of base flow monitoring on Aug 9, 2006, 11 days after the previous rainfall event of July 28 which deposited 1.22 cm (0.48 in) at the University of Delaware rain gage in Newark. The maximum temperature on August 9 was 30.3°C (86.5°F), warmer than the sampling events in May 2006. Fig. 5 indicates base flow ranged from 0.001 to 0.026 m3/s/km2, lower than flows recorded earlier in the water year during May 2006. Linear regression($BF = -0.0263(IC) + 0.0137$) and $R^2 = 0.32$ indicates a correlation where stream base flow declines with increased watershed imperviousness similar to that observed during the May 2006 events.
September 6, 2007: We resumed the fourth round of base flow monitoring, 15 days after the previous rainfall event of August 21 which deposited 1.83 cm (0.72 in) at the University of Delaware rain gage in Newark. The maximum temperature on September 6 was 31.2°C (88.1°F). Fig. 6 indicates base flow ranged from 0.0008 m³/s/km² (41% impervious) to 0.0048 m³/s/km² (9.3% impervious). These were the lowest recorded base flows, reflecting late summer conditions. Linear regression (BF = -0.006(IC) + 0.0039) and R² = 0.46 indicates a stronger correlation between increased watershed imperviousness and decreased base flow than observed during the 3 events in 2006.

October 8, 2007: We conducted the fifth round of base flow monitoring on October 8, 2007, 16 days after the previous rainfall event of September 22 which deposited 0.61cm (0.24 in) at the University of Delaware rain gage in Newark. The maximum temperature on Oct 8 was 31.3°C (88.4°F). Fig. 7 indicates base flow ranged from 0.0004 to 0.0058 m³/s/km² for impervious cover ranging from 41% to 9.3%. Linear regression line (BF= -0.0078(IC) + 0.004) and R² = 0.58 suggests good correlation (the strongest of the 5 events) between increased watershed impervious and decreased stream base flow.

Median of 5 events: Fig. 8 plots the median of base flows recorded on May 2, May 26, and August 9, 2006; and September 6 and October 8, 2007 versus watershed impervious cover. Linear regression line of best fit (BF = -0.0238(IC) + 0.0123) with slope of -0.0238 m³/s/km²/% imp and R² = 0.34 confirms a negative correlation between increasing watershed impervious cover and decreased dry weather base flow.

Discussion

We observed consistent correlation between increased watershed impervious cover and decreased dry weather base flow during all five monitoring events in 2006 and 2007. The coefficients of determination (R²) for the five events are 0.33, 0.35, 0.32, 0.46, and 0.58 indicating reasonably fair to good correlation. All five of the events recorded negative slopes (-0.0588, -0.0350, -0.0263, -0.0060, and -0.0078 m³/s/km²/% imp) for the linear equation of best fit indicating negative correlation between impervious cover and stream base flow.

Seasonal differences between impervious cover and base flow were somewhat apparent as late season results were better correlated than early season results. The highest R² values (0.46 and 0.58) were observed in late
summer and fall on September 6 and October 8, 2007. Base flows were higher earlier in the water year in the spring than in late summer or early fall. Median base flows during May 2, May 26 and August 2006 and September 6 and October 8, 2007 were 0.0179, 0.0116, 0.0080, 0.0026, and 0.0025 $\text{m}^3/\text{s}/\text{km}^2$, respectively.

By selecting monitoring stations in the same watershed (White Clay Creek and the Christina Basin), and same physiographic province (Piedmont) we attempted to minimize variances in base flow due to differing hydrology, geology and soils. The sites are underlain by the Wissahickon Schist, Gneiss, and Cockeysville Marble formations in the hilly, rocky Piedmont. The monitoring site watersheds share similar soils in the Glenelg, Manor, Chester, and Elsinboro-Delanco soil associations.

Other land use factors such as forest cover may influence the amount of base flow in a stream. Booth, Hartley, and Jackson (2002) observed that the amount of forest cover in a watershed impacts stream flow. We conducted a linear regression analysis of base flow versus forest cover at the 19 monitoring sites and found a reasonable correlation for the monitoring events conducted earlier in the season when flows were higher on May 2, May 26, and August, 2006 ($R^2 = 0.46, 0.39, \text{and } 0.36$) but found a poor correlation later in the season when flows were lower on September 6 and October 8, 2007 ($R^2 = 0.14 \text{ and } 0.19$). We founded that base flow and forest cover was better correlated when base flows were higher which typically occurs earlier in the water year (Fig. 9). High evapotranspiration rates in highly forested watersheds during the hot, late summer months may explain this poor late season correlation.

We evaluated whether the size of the watershed may affect the base flow - impervious cover relationship. All of the mostly forested watersheds with less than 10% impervious and high base flows also have drainage areas less than 13 km2 (5 mi2). Yet several large watersheds such as the Brandywine Creek and White Clay Creek also have low impervious cover and high base flows. Small watersheds such as the Shellpot Creek and Harmony Run have high impervious cover with low base flows. While we did not find an apparent relationship between watershed size and base flows, we did observe that due to development and fragmentation of forests and open space in the urbanized Mid-Atlantic, it was difficult to find stream monitoring stations that drain large watersheds with low impervious cover.

Other researchers have concluded that leaking water systems can offset loss of recharge due to increasing impervious cover, and in some cases, may increase base flows in urbanizing watersheds. The watersheds in the White Clay Creek monitoring network with more than 5% urban/suburban land are served by public water systems
with estimated unaccounted for water losses of about 10%, so we expect that some leakage is occurring into the groundwater. On the other hand, groundwater in the watersheds is also intercepted by a regional sanitary sewer system which is frequently rehabilitated to reduce high infiltration and inflow (I & I) rates. Leakage from the water supply system may be occurring and it may be offset to some degree by interception of groundwater by the sanitary sewer system as I & I.

Policy Implications

Our research in the White Clay Creek watershed of the Christina Basin in northern Delaware indicates urbanized watersheds with higher amounts of impervious cover tend to have decreased base flows. To mitigate loss of recharge and base flow, we recommend that governments consider water resource protection area ordinances that set impervious cover thresholds on new development in sensitive watersheds, wellhead, and recharge areas.

The New Castle County, Delaware water resource protection area (WRPA) ordinance limits the amount of impervious cover (such as roof and pavement) to 20% or new development in surface water, recharge and wellhead areas. WRPAs are defined as limestone aquifers, reservoir watersheds, wellhead areas, and recharge areas. Impervious cover thresholds are concepts that seek to balance a right to realize economic development of land with protection of water resources by minimizing loss of recharge and protecting the quality and quantity of water supplies in WRPAs (Kauffman et. al 2004).

New development in New Castle County WRPAs may exceed the 20% impervious cover threshold, but not exceed 50% impervious, provided the applicant submits a climatic water budget and installs infiltration facilities to augment recharge. The water budget must document that post development recharge will be no less than predevelopment recharge when computed on an annual basis. The applicant is required to offset the loss of recharge due to increased impervious cover by constructing recharge facilities that convey relatively pure rooftop runoff for infiltration to groundwater.

Local governments are urged to protect ground and surface waters in WRPAs through a recommended source water protection hierarchy (ranked in order of preference): (1) preserve WRPAs as open space and parks by acquisition or conservation easement, (2) limit impervious cover of new development to 20% by right within WRPAs, (3) Allow impervious cover of new development to exceed 20% within WRPAs (but no more than 50% impervious) provided the applicant develops recharge facilities that directly infiltrate rooftop runoff, and (4) allow
impervious cover of development to exceed 20% within WRPA’s (but less than 50% impervious) provided the applicant develops recharge facilities that infiltrate runoff from forested and grassed surfaces with pretreatment.

Progressive WRPA ordinances incorporate the following impervious cover reduction strategies to minimize total pavement and roof area in the watersheds:

- Narrower residential roads.
- Smaller turn-around and cul-de-sac radii
- Smaller parking stalls
- Angled one-way parking
- Smaller front yard setbacks
- Disconnect rooftop runoff to splash onto lawns
- Remove existing impervious surfaces
- Shorter road lengths
- Permeable paving for spill over parking areas
- Smaller parking demand ratios
- Clustered subdivisions with open space
- Shared parking and driveways
- Reforest along riparian streams.
- Acquire open space and conservation easements.

Conclusions

During each of five monitoring events in 2006 and 2007 at 19 stations in and near the White Clay Creek Wild and Scenic River watershed in Delaware, we observed that increased watershed impervious correlates with decreased base flow. For the five events, the coefficients of determination (R²) based on linear regression of impervious cover and base flow data are 0.33, 0.35, 0.32, 0.46, and 0.58, evidence of fair to good correlation. We attribute decreased base flow in the highly urbanized, high impervious cover watersheds to loss of permeable recharge areas covered by roof and pavement. Water supply leakage into the groundwater may be occurring but is offset by byproducts of urbanization such as storm sewers and sanitary sewers that intercept and lower the groundwater table resulting in less base flow in the streams. Urbanization and its byproducts are reducing groundwater recharge as the source of base flow in streams in and near the White Clay Creek watershed in northern Delaware. Increased watershed imperviousness can result in dwindling drinking water and aquatic resource flows especially during drought periods. Water resource protection area ordinances, recharge augmentation, and pavement reduction techniques are available to reduce the impacts of impervious cover on watershed hydrology.
References

Table 1. Impervious cover, runoff, and infiltration by the curve number (CN) method.

<table>
<thead>
<tr>
<th>Land Cover (Soil Group B)</th>
<th>Imp. %</th>
<th>CN</th>
<th>Precip. cm</th>
<th>Runoff cm</th>
<th>Infiltr. cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Space</td>
<td>0%</td>
<td>61</td>
<td>5.1</td>
<td>0.2</td>
<td>4.9</td>
</tr>
<tr>
<td>Residential low</td>
<td>12%</td>
<td>65</td>
<td>5.1</td>
<td>0.4</td>
<td>4.7</td>
</tr>
<tr>
<td>Residential med.</td>
<td>25%</td>
<td>70</td>
<td>5.1</td>
<td>0.6</td>
<td>4.5</td>
</tr>
<tr>
<td>Residential high</td>
<td>38%</td>
<td>75</td>
<td>5.1</td>
<td>1.0</td>
<td>4.1</td>
</tr>
<tr>
<td>Apartments</td>
<td>65%</td>
<td>85</td>
<td>5.1</td>
<td>2.0</td>
<td>3.1</td>
</tr>
<tr>
<td>Commercial</td>
<td>85%</td>
<td>92</td>
<td>5.1</td>
<td>3.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Pavement</td>
<td>100%</td>
<td>98</td>
<td>5.1</td>
<td>4.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table 2. Literature review of watershed impervious cover and base flow studies.

<table>
<thead>
<tr>
<th>Date</th>
<th>Author(s)</th>
<th>Watershed</th>
<th>Area</th>
<th>Summary of Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1968</td>
<td>Leopold</td>
<td>Brandywine</td>
<td>Southeastern PA</td>
<td>Imperviousness increases flood peaks and decreases low flows.</td>
</tr>
<tr>
<td>1973</td>
<td>Hammer</td>
<td>Schuylkill</td>
<td>Philadelphia, PA</td>
<td>Base flow declined until watershed impervious reached 40% to 50%.</td>
</tr>
<tr>
<td>1975</td>
<td>Tennant</td>
<td></td>
<td></td>
<td>Fish suitability declines when watershed imperviousness exceeds 45%.</td>
</tr>
<tr>
<td>1976</td>
<td>Hollis</td>
<td>Canon’s Brook</td>
<td>England</td>
<td>Decreased base flow is likely to occur as a result of urbanization.</td>
</tr>
<tr>
<td>1979</td>
<td>Klein</td>
<td>Chesapeake</td>
<td>Maryland</td>
<td>As watershed imperviousness increases, stream base flow diminishes.</td>
</tr>
<tr>
<td>1982</td>
<td>Simmons, Reynolds</td>
<td>South Shore</td>
<td>Long Island, NY</td>
<td>Base flows along 6 urbanized streams reduced to 20-85% of total flow.</td>
</tr>
<tr>
<td>1990</td>
<td>Ferguson, Suckling</td>
<td>Peachtree Creek</td>
<td>Atlanta, GA</td>
<td>Low flows declined as the watershed evolved from less to more urbanized.</td>
</tr>
<tr>
<td>1997</td>
<td>Scorca</td>
<td>East Meadow</td>
<td>Long Island, NY</td>
<td>By 1970’s, base flow decreased by 70% from predevelopment before 1953.</td>
</tr>
<tr>
<td>2000</td>
<td>Brun and Band</td>
<td>Gwynns Falls</td>
<td>Baltimore, MD</td>
<td>Runoff ratio changes dramatically when watershed impervious exceeds 20%.</td>
</tr>
<tr>
<td>2000</td>
<td>Finkenbine, Atwater</td>
<td>English Bay</td>
<td>Vancouver, BC.</td>
<td>Summer base flow extremely low in streams where impervious > 20 to 40%.</td>
</tr>
<tr>
<td>2001</td>
<td>Wang, Lyons, Kanehl</td>
<td>Fox River</td>
<td>Southeastern WI</td>
<td>Impervious of 8%-12% is threshold associated with sharp decline in base flow.</td>
</tr>
<tr>
<td>2002</td>
<td>Jennings, Jarnagin</td>
<td>Accotink Creek</td>
<td>Virginia</td>
<td>Change in stream flow occurred between 13% (1963) & 21% (1971) impervious.</td>
</tr>
<tr>
<td>2002</td>
<td>Meyer</td>
<td>Illinois</td>
<td></td>
<td>Base flows increase with urbanization from water system and sewer leakage.</td>
</tr>
<tr>
<td>2002</td>
<td>Konrad and Booth</td>
<td>Puget Sound</td>
<td>Washington</td>
<td>Low flows increase in urban/suburban and decrease in suburban/2 rural streams.</td>
</tr>
<tr>
<td>2005</td>
<td>Brandes et al.</td>
<td>Delaware River</td>
<td>NJ, PA</td>
<td>Increases in impervious to 7-21% may not result in reductions in base flow.</td>
</tr>
<tr>
<td>2005</td>
<td>Rogers and DeFee</td>
<td>White Oak</td>
<td>Houston, TX</td>
<td>With increased impervious, flood/drought potential doubled 3 times 1980-2000.</td>
</tr>
<tr>
<td>2005</td>
<td>Walsh et. al.</td>
<td></td>
<td></td>
<td>Reduced base flow from impervious counteracted by water supply leaks.</td>
</tr>
</tbody>
</table>
Table 3. Land use and impervious cover of stream base flow monitoring watersheds in Delaware.

<table>
<thead>
<tr>
<th>ID</th>
<th>Stream</th>
<th>Imp. %</th>
<th>Watershed km²</th>
<th>Urban %</th>
<th>Agr. %</th>
<th>Forest %</th>
</tr>
</thead>
<tbody>
<tr>
<td>W5</td>
<td>Mill Creek</td>
<td>34.2</td>
<td>33.6</td>
<td>12.5</td>
<td>71</td>
<td>4</td>
</tr>
<tr>
<td>W6</td>
<td>Pike Creek</td>
<td>29.8</td>
<td>17.1</td>
<td>6.6</td>
<td>66</td>
<td>7</td>
</tr>
<tr>
<td>W7</td>
<td>Middle Run</td>
<td>9.3</td>
<td>10.1</td>
<td>3.9</td>
<td>24</td>
<td>41</td>
</tr>
<tr>
<td>W8A</td>
<td>Blue Hen Cr.</td>
<td>31.8</td>
<td>1.0</td>
<td>0.4</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>W8B</td>
<td>Fairfield</td>
<td>18.0</td>
<td>0.3</td>
<td>0.1</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>W8D</td>
<td>Old Trestle</td>
<td>5.3</td>
<td>0.5</td>
<td>0.2</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>W8G</td>
<td>Footbridge</td>
<td>14.6</td>
<td>0.8</td>
<td>0.3</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>W8H</td>
<td>Wedgewood</td>
<td>4.7</td>
<td>1.3</td>
<td>0.5</td>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>W8J</td>
<td>Nature Center</td>
<td>4.6</td>
<td>0.8</td>
<td>0.3</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>W8L</td>
<td>Lamborn</td>
<td>2.8</td>
<td>2.3</td>
<td>0.9</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>W8M</td>
<td>Corner Ketch</td>
<td>8.0</td>
<td>2.9</td>
<td>1.1</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>W9A</td>
<td>Harmony</td>
<td>43.8</td>
<td>2.6</td>
<td>1.0</td>
<td>87</td>
<td>5</td>
</tr>
<tr>
<td>W9C</td>
<td>Cool Run</td>
<td>41.2</td>
<td>9.3</td>
<td>3.6</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>W9F</td>
<td>Jenny's Run</td>
<td>28.3</td>
<td>2.1</td>
<td>0.8</td>
<td>61</td>
<td>13</td>
</tr>
<tr>
<td>BWW</td>
<td>Brandywine</td>
<td>13.4</td>
<td>828</td>
<td>319</td>
<td>23</td>
<td>37</td>
</tr>
<tr>
<td>RCS</td>
<td>Red Clay</td>
<td>17.3</td>
<td>140</td>
<td>54</td>
<td>33</td>
<td>30</td>
</tr>
<tr>
<td>WCS</td>
<td>White Clay</td>
<td>16.1</td>
<td>264</td>
<td>102</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>CHR</td>
<td>Christina</td>
<td>21.5</td>
<td>54</td>
<td>21</td>
<td>45</td>
<td>27</td>
</tr>
<tr>
<td>SHP</td>
<td>Shellpot</td>
<td>41.0</td>
<td>19.3</td>
<td>7.5</td>
<td>77</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4. Stream base flow measurements in Delaware on May 2, 2006.

<table>
<thead>
<tr>
<th>ID</th>
<th>May 2, 2006</th>
<th>Imp. %</th>
<th>DA km²</th>
<th>v m/s</th>
<th>A m²</th>
<th>Q=vA m³/s</th>
<th>Q/DA m³/s/km²</th>
<th>Q/DA ft³/s/mi²</th>
</tr>
</thead>
<tbody>
<tr>
<td>W5</td>
<td>Mill Creek</td>
<td>34.2%</td>
<td>33.57</td>
<td>0.27</td>
<td>1.37</td>
<td>0.3770</td>
<td>0.0113</td>
<td>1.03</td>
</tr>
<tr>
<td>W6</td>
<td>Pike Creek</td>
<td>29.8%</td>
<td>17.11</td>
<td>0.22</td>
<td>1.52</td>
<td>0.3284</td>
<td>0.0193</td>
<td>1.76</td>
</tr>
<tr>
<td>W7</td>
<td>Middle Run</td>
<td>9.3%</td>
<td>10.11</td>
<td>0.16</td>
<td>1.03</td>
<td>0.1664</td>
<td>0.0166</td>
<td>1.51</td>
</tr>
<tr>
<td>W8A</td>
<td>Blue Hen Cr.</td>
<td>31.8%</td>
<td>1.04</td>
<td>0.09</td>
<td>0.11</td>
<td>0.0096</td>
<td>0.0093</td>
<td>0.85</td>
</tr>
<tr>
<td>W8B</td>
<td>Fairfield Run</td>
<td>18.0%</td>
<td>0.26</td>
<td>0.21</td>
<td>0.03</td>
<td>0.0056</td>
<td>0.0217</td>
<td>1.97</td>
</tr>
<tr>
<td>W8D</td>
<td>Old Trestle</td>
<td>5.3%</td>
<td>0.47</td>
<td>0.18</td>
<td>0.06</td>
<td>0.0113</td>
<td>0.0245</td>
<td>2.22</td>
</tr>
<tr>
<td>W8G</td>
<td>Footbridge</td>
<td>14.6%</td>
<td>0.75</td>
<td>0.07</td>
<td>0.33</td>
<td>0.0219</td>
<td>0.0294</td>
<td>2.67</td>
</tr>
<tr>
<td>W8H</td>
<td>Wedgewood</td>
<td>4.7%</td>
<td>1.27</td>
<td>0.47</td>
<td>0.15</td>
<td>0.0690</td>
<td>0.0546</td>
<td>4.97</td>
</tr>
<tr>
<td>W8J</td>
<td>Nature Center</td>
<td>4.6%</td>
<td>0.80</td>
<td>0.20</td>
<td>0.19</td>
<td>0.0393</td>
<td>0.0488</td>
<td>4.44</td>
</tr>
<tr>
<td>W8L</td>
<td>Lamborn Run</td>
<td>2.8%</td>
<td>2.33</td>
<td>0.11</td>
<td>0.33</td>
<td>0.0357</td>
<td>0.0154</td>
<td>1.40</td>
</tr>
<tr>
<td>W8M</td>
<td>Corner Ketch</td>
<td>8.0%</td>
<td>2.85</td>
<td>0.19</td>
<td>0.27</td>
<td>0.0523</td>
<td>0.0185</td>
<td>1.68</td>
</tr>
<tr>
<td>W9A</td>
<td>Harmony Run</td>
<td>43.8%</td>
<td>2.59</td>
<td>0.06</td>
<td>0.27</td>
<td>0.0173</td>
<td>0.0067</td>
<td>0.61</td>
</tr>
<tr>
<td>W9C</td>
<td>Cool Run</td>
<td>41.2%</td>
<td>9.33</td>
<td>0.09</td>
<td>1.14</td>
<td>0.1041</td>
<td>0.0112</td>
<td>1.02</td>
</tr>
<tr>
<td>W9F</td>
<td>Jenny's Run</td>
<td>28.3%</td>
<td>2.07</td>
<td>0.13</td>
<td>0.29</td>
<td>0.0379</td>
<td>0.0184</td>
<td>1.67</td>
</tr>
<tr>
<td>BWW</td>
<td>Brandywine</td>
<td>13.4%</td>
<td>828.20</td>
<td>9.3517</td>
<td>0.0114</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCS</td>
<td>Red Clay</td>
<td>17.3%</td>
<td>140.08</td>
<td>1.1902</td>
<td>0.0085</td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCS</td>
<td>White Clay</td>
<td>16.1%</td>
<td>264.06</td>
<td>1.3886</td>
<td>0.0053</td>
<td>0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHR</td>
<td>Christina</td>
<td>21.5%</td>
<td>54.54</td>
<td>0.3401</td>
<td>0.0063</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHP</td>
<td>Shellpot Cr.</td>
<td>41.0%</td>
<td>19.34</td>
<td>0.0567</td>
<td>0.0029</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Summary statistics of impervious cover and base flow correlation for Delaware watersheds.

<table>
<thead>
<tr>
<th>Date</th>
<th>R²</th>
<th>Slope m³/s/km²</th>
<th>Median Base Flow m³/s</th>
<th>Base Flow Maximum ft³/s</th>
<th>Base Flow Minimum ft³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% imp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/2/06</td>
<td>0.33</td>
<td>-0.0588</td>
<td>0.0179</td>
<td>1.63</td>
<td>0.0488</td>
</tr>
<tr>
<td>5/26/06</td>
<td>0.35</td>
<td>-0.0350</td>
<td>0.0116</td>
<td>1.06</td>
<td>0.0342</td>
</tr>
<tr>
<td>8/9/06</td>
<td>0.32</td>
<td>-0.0263</td>
<td>0.0080</td>
<td>0.74</td>
<td>0.0256</td>
</tr>
<tr>
<td>9/6/07</td>
<td>0.46</td>
<td>-0.0060</td>
<td>0.0026</td>
<td>0.24</td>
<td>0.0048</td>
</tr>
<tr>
<td>10/8/07</td>
<td>0.58</td>
<td>-0.0078</td>
<td>0.0025</td>
<td>0.23</td>
<td>0.0058</td>
</tr>
<tr>
<td>5 events</td>
<td>0.34</td>
<td>-0.0238</td>
<td>0.0074</td>
<td>0.67</td>
<td>0.0258</td>
</tr>
</tbody>
</table>

Fig. 1. Location map of Christina Basin monitoring stations.

Fig. 2. Base flow monitoring stations in the White Clay Creek watershed.

Fig. 3. Impervious cover and base flow observed on May 2, 2006.

Fig. 4. Impervious cover and base flow observed on May 26, 2006.

Fig. 5. Impervious cover and base flow observed on August 9, 2006.

Fig. 6. Impervious cover and base flow observed on September 6, 2007.

Fig. 7. Impervious cover and base flow observed on October 8, 2007.

Fig. 8. Impervious cover and median base flow observed for 5 events in 2006 and 2007.

Fig. 9. Forest cover and base flow observed during May 2, 2006.
Figure 3

Impervious Cover vs Base Flow
White Clay Creek, Delaware (May 2, 2006)

Base Flow (cms/sq km)

Impervious Cover

BF = -0.0588(IC) + 0.0298

R² = 0.33
Figure 4

Impervious Cover vs Base Flow
White Clay Creek, Delaware (May 26, 2006)

BF = -0.035(IC) + 0.0186

$R^2 = 0.35$
Figure 5

Impervious Cover vs Base Flow

White Clay Creek, Delaware (Aug 9, 2006)

Base Flow (cms/sq km) vs Impervious Cover

Equation:

\[BF = -0.0263(\text{IC}) + 0.0137 \]

R^2 = 0.32
Impervious Cover vs Base Flow
White Clay Creek, Delaware (Sep 6, 2007)

Base Flow (cms/sq km)

BF = -0.006(IC) + 0.0039

R² = 0.46
Figure 7

Impervious Cover vs Base Flow
White Clay Creek, Delaware (Oct 8, 2007)

Base Flow (cms/sq km)

Impervious Cover

\[BF = -0.0078(\text{IC}) + 0.004 \]

\[R^2 = 0.58 \]
Impervious Cover vs Base Flow
White Clay Creek, Delaware (Median of 5 events)

Base Flow (cms/sq km)

Impervious Cover

\[BF = -0.0238(IC) + 0.0123 \]

\[R^2 = 0.34 \]
Figure 9
Base Flow vs Forest Cover
White Clay Creek, Delaware (May 2, 2006)

BF = 0.0005F - 0.0012
R² = 0.46